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A new approach is proposed for analyzing the compressible

turbulent boundary with arbitrary pressure gradient. The new
theory genexalizes an incompressible study by the first author
to account for variations in wall temperature and freestream Mach
number and temperature. By properly handling the law-of-the-wall
in the integration of momentum and continuity across the boundary
layer, one may obtain a single ordinary differential equation for
skin friction devoid of 1ntegra1’ thicknesses and shape factors,
The new differential equation is analyzed for various cases.
For fhﬁ plate flow, a new relation is derived which is the most
accurate of all known theories for adiabatic flow and reasonably
good (fourth place) for flow with heat transfer. For flow with
strorg adverse and favorable pressure gradients, the new theory |
is in excellent aqi«unt witli_oxporinnt, possibly the most 7
accurate o: iny kno\m theory, ‘altho\agh the daur'u"o 'eoo ‘wir.. o

to draw thh"mlmlon. The new theory also co"nt"u.nn an 6:tpucie -

c:itc:ion for bounduy uyor £low upnnc:lon Aho. it appun

to be the -upmt by far of any conp:uaibh boundaxy hyor ]

mly-u. even y:hld:l.nq to hand conpuuuon if du.i.rod.
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I. INTRODUCTION

It is the purpose of this report to develop and illustrate a new
type of approximate method for calculating the skin friction distribu-

tion in a compressible turbulent boundary layer under arbitrary heat

transfer and pressure gradient conditions. This method is an extension

of an incompressible flow analysis reported by White (74)t

One must review the present status of compressible turbulent
boundary layer calculation in order to justify the need for a new
method. A gfeat many workers are active in the field of boundary
layer prediction. For incompressible turbulent flow, over sixty
different methods exist; and the relative merits of some twenty-
eight of these weré fhrashed out thorcughly in the recent stanford
Conference edited by Kline et al (38). Attention has now turned to
the compressible  turbulent bdundar§ layer, and a review last year by
Beckwith (; ) of the new methods in this field contains one hundred
references, Also, in 1968, An entire symposium, edited by Bertram (5 ),
was devoted to the compressible turbulent boundary layer.

Following Beckwith (4 ), we may divide the compressible flow

methods into three types. . '(\
1. winite difﬂerence (FD) ‘methods which attack the full boundary
layer equations by dividing the flow field into a two-dimensional

mesh.

2. 1Integral (IM)imethods which utilize the compressible form of

*Numbers in parentheses denote references, which are grouped alphabetically

at the end of this report.
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the so~called Karman integral relations - cf. Schlichting (62),

Egs. (13.80) and (13.87) - plus suitable auxiliary inforxmation
about the behavior of the various integral thicknesées\and
shape factors,

3. Correlation techniques (CT) which relate skin friction and
Stanton number to local flow parameters through empirical
algebraic expressions, mostly derived frbm flat plate data
but often employed in more general problems.

To these we may add a fourth type of method to which, presumably, the
present report belongs:

4. Methods which utilize a markedly different point of view
without sacrificing either physical realism or computational
accuracy.

All of these methods of course suffer fr&m the fagt that the turbulence
terms are not well defined and certainly not known exactly in any situ-
ation, particularly for éompressible flow. Thus all computations of
the turbulent boundary layér are approximate and semi-empifical, even
if the most sophisticated‘finite difference techniques are used. This
is not to downgrade the FD methods, which are timevconsuming but
sufficiently comprehensive tb alléﬁ onévto>ﬁ§k;7"nuﬁérical experiments"
into the nature of the turbulence approximations.

To resolve the turbulence terms and achieve closure of the basic

equations, various approaches can be taken for compressible flow:

1. Eddy viscosity, eddy conductivity, and tﬁrbulent energy

correlations - primarily used in the FD methods,




2. Empirical correlations between skin friction, Stanton number,

integral thicknesses, and shape factors - primarily for IM

f - methods.

3. Compressibility transformations which relate the compressible

4% § flow to a supposedly "equivalent”" incompressible flow - useful

in all three types of methods (FD, IM, and CT).
4, The law-of-the-wall or the-wall-of-the-wake. These two laws
are well-accepted physically and useful in all methods, in-
cluding the present report, which utilizes the law-of~the-wall
as a sort of "equation of state" of turbulence. «Kline (38)
has stated that no method which ignores the law-of-the-wall can
be successful.
We may list by type the following boundary layer methods which have
been applied successfully to compressible flow, at least for adiabatic
walls:
1. FD methods: Herring and Mellor (30), Cebeci, Smith and Mosin-
skis (14), Patankar and Spalding (58), Fish and McDonald (26),
Bushnell and Beckwith (11), Bradshaw and Ferriss (6 ), Cebeci (13).
Computer listings are available ¢to the general reader from Herring
and Mellor and from Patankar and Spalding,
2. IM methods: Reshotko and Tucker (59), Camarata and McDonald (12),
Alber and Coats (2 ), Henry et al (29), Nielsen and Kuhn (55),
Shang (63), Saaman and Cresci (6l1), Winter, smith and Rotta (77),

A complete FORTRAN program for the method of Sasman and Cresci

B e
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is given by McNally (47). -

3. CT methods: Van Driest (71), Spalding and Chi (66), Sommer
and short (65), Eckert (24), Moore (52), Coles (18), Komar
{39), wilson (75), and Tetervin (70).
As mentioned, many of these methods use the compressibility trans-
formations which relate the equations to an incompressible flow. Such
transformations have a long history in laminar flow, but in turbulent
flow they were apparently first suggested by Van Le (73). Subsequently,
the idea was developed by Mager (44), Baronti and Libby (3 ), Laufer

{41), Lewis, Kubota and Webb (43), and culminating with an extensive

recent discussion by Economos (25). While the compressibility trans-

| formations are indeed accurate for flat plate conditions at moderate

. Mach numbers and heat transfer rates (and the present report leads

coincidentally to just such a transformation), they are based upon

a kinematic invariance between compresgsible and incompressible tur-
bulence. Thus the transformations probably fail at conditions of
strong pressure gradient, high Mach number, or large heat transfer.
The present method chooses not to rely upon such a transformation
except for flat plate conditions where the ides ariscs izplicitiy.

The present method is intended to compete with (or even rcphéo) ’
the other integral methods now in use. Let us thcrpforé discuss thui
other methods. To the authors’' knowledge, all integral schemes now
in use !oi the éouprou:l.bh turbulent boundary layer have 'thﬁit roou

in the Karman integral relation. This relation arises by integrating

the two-dimensional compressible momentum equation with respect to y




across the entire boundary layer. One form of the result is as follows:

du U dp s ¢
a6 0 e e e 1 d - £
R K AL TRk ARk - Sl S L b

where subscript "e" denotes freestream conditions. The momentum thick-

ness O and displacement thickness 8" have their compressible forms:

6 g pu ( u ) $ pu '
= ==(1- =)4dy s % =2 f (1- ==) (2)
0 PU, Ue ° Pele v

and the shape factor H., = §#/8, Equation (1) is a rather general fom

12
of the Karman integral relation, as discussed by H. McDonald in Bertram
(5). If, for example, the freestream is adiabatic - which is the
usual case - the term involving the freestream density variation may

be rewritten as:

U do .
e e 2 :
e ] : ‘

Also, the i:h:l:d’hrlon the left, involving the pmnmvnmtzon
across the boundary layer, is neglected in most hm:n analyses.
Por incompressible flow, it is certainly true that p = p." to ‘good

approximation, and this term vanishes. However, for compressible flow ,




particularly with large streamwise pressure gradients, this term may

be quite significant., Michel (49 found in an experiment at Me = 2,0 ;
that the wall pressure could be as much as 25% higher than P, and ;
that Eqn. (1) could not be balanced to within 30% of the measured
momentum thickness without the inclusion of the pressure variation
term. Similar results are reported by Hoydysh and Zakkay (35). It
appears that integral methods which neglect this effect have simply
delayed the moment of truth by masking the error in a pseudo-corre-
lation between 0, “12' and C £ which temporarily accounts for the
discrepancy. McDonald goes on to state that no Karman integral
method should neglect the pressure variation term, and Myring and
Young ( 54 have indicated a "Mach wave" approximation for calculating
this temm.
The Xarman integral relation, then, hardly stands on its own as
an analytical tool for the compressible turbulent boundary layer, It

is one equation in four unknowns: 1) 0; 2) 3) C,t and 4) the

Hya! £
pressure variation tem. Therefore it must be liberally supplemented
by other empirical and analytical rohtiom. The new roh‘tionﬁ o!ton
b:in§ in new variables and, 'bcfou closure is finally achieved, the
final plckaﬁ of equations can be quite imposing. éor o’uiph, the
}ncent i.ntoqnl mathod of Albot and Contos (2 ). which h one of thc
'mt accurate to date, uses tho fonmd.nq rohttm:

1. The Karman mtogul relation - Eqn. (1).: :

2, The mean energy huqnl ni&d{m.

dpdnin




9.

The law-of-the-wall.

The law-of~the-wake.

The generalized velocity variable suggested by van Driest (71).
A correlation for the equilibrium dissipation integral,

An empirical expression relating wake function to local pressure
gradient,

A modified Crocco relation for density variation across the
layer.

The lateral pressure gradient term in Egqn. (1) is neglected.

Even with this formidable package of approximations and auxiliary rela-

tions, the method of Alber and Coates is valid only for adiabatic flow and

is yet to be extended to heat transfer conditions. Similarly, other

integral methods grow to substantial sisze when compressibility, heat

transfer, and pressure gradient have all been accounted for. The

computer program of NcNally (47) for the method of Sasman and Cresc~i (61)

contains over one thousand lines of rom_'m' instructions. This is

the same order of ~omplexity as f.ho FD methods, although in fact the

integral methods wers intended to be an order of magnitude simpler

than finite difference computations. In the present state of integral

nthpdt. then, the working relations are too complicated to allow for |

~ hand computation, and the eq'nmdﬁp:oq‘rm off_or_c‘d to the user are

too c~wplicated 'to:-tmt::blo -hooﬂ.nq. The uui'h left even more

impotent by the PD methods, wliich- nust bhe accepted at their ueo"va‘lu.ca'

the p:bduct of mn ‘of work by theiz authors. T™vo years ago, the pre-

" pent wsiters obtained a PORTRAN deck (800 cards) of ~ne of the better




finite difference methuds. The program runs beautifully with the

sample data included in the instructions, but numerical overflow always
occurs when the writers' new data is inserted. No doubt the writers
are at fault, but unresolved human failings are often the result when
large computer listings are borrowed and put to new use,

It is the purpose of this report to present an alternate inte-
gral method which is quite frankly meant to compete with the Karman
integral approach. This may well be an impossible task. The Kar-
wan integral relation is an absolute monarch at the present time, Some
idea of its pervasiveness throughout the field of boundary layer
phenomena can be had by studying the recent data of Brott et al (9)
for a favorable pressure gradient at about “e = 4: After mlwim
all of their data, these authors suggest tha following empirical formula
for calculating the skin fricuon'cootticient C, in a supersonic flow
with favorable pressure gradient: ' .

¢ & at®) nob“" ,  where B s - _-ng and

=y 8/v. (8)
) . ¢ e

-

) Here a and b are curve-fit funéti&n_l of the p:ounro gradient mmur B
which ‘Ls a vcihtt#n of Clauser's (17) ‘ ot&@ plrnomt!ut "_"“ o
© based upon &' ingtead of 0. MNow this formula is dimensionally |
;-picc.bu and agrees well with Brott's nunm akin friction, but
is totally !:ﬁu:atinq to'thopéisgnt writers and has »-u;cio noro

ghan nuisance value. The undn, u-thag_‘both_ qf the chqnn ’pamtm.

"Brotr's data will be compared in this report with the present method.




are proportional to the local momentum thickness 0(x), which is un-
known apriori. If one knew O(x), it would appear that one has actually
solved the problem, so that Egn. (4) would not even be needed. This
dilemma vanishes if one adopts an orthodox stance, in which case he

is expected to compute O(x) from Eqn. (1) and its auxiliary relations.
Thus Eqn. (4), which is accurate and concigse and tempts one to file

it away for immediate use, actually has no intrinsic value: it is
merely another auxiliary relation for the Karman integral equation,

In the present view, it is a frustrating and ever recurring pattern
of correlating cf(x) with an integral thickness such as ¢(x) and hence
replacing one unknown by another. The method to be presented here
attacks cf(x) directly’ and ignores integral thicknesses and shape
factors, which can be calculated later by algebraic formulas if one
80 desires. | o »

The new method will be shown to be reasonably accurate when cbm-
pared with data. Indeed, it may be the most accurate overall of any
method yet propoud for the coq;xeﬁo:lhlo turbulent boundary layer’.

- It makes uss oal, of the iq‘dituiéﬁi of wotion pius a singie extra
ivla:#on‘_ needed for .cl’ocun_;- the m-of_-_elp;dau; The law-of~the-vake |
" in its standard _!6:- is not used explicitly but is implied to the
extent that deviaticns from the logarithaic lav-of-the-vall may be
called a "nko". Appluntly the l_tut-':é:i.du. Attnpt to dovﬁl’op, -
thu mt.du vas a pﬁpﬁ:‘,w Brand Anﬂ Person .(1). 1n1964 . eo‘ﬁc.emiﬁq_
huzc.prniibl@ flow at very modest pr.n_c'u_rov 9:061.;&'. Lnir work for
ittonq p't_'“iuu §m1qtl was nporud by ﬂhi:e_ (74)4_ :’l‘h‘c ﬁuum: re~
port is the firit @tﬁlpt t§ extend the method to turbulent compressible

flow.




II. DEVELOPMENT OF THE NEW METHOD

The present analysis is restricted to steady two-dimensional flow
of a perfect gas in a compressible turbulent boundary layer, These
restrictions are not critical, and the success of the method in
arbitrary applications will govern whether further generalization is
warranted, Thus we are concerned with the following four basic re-
lations for the turbulent boundary layer mean flow:

a) The continuity equation:

:—-;(pu) + :——y(ov) = 0 (%)

b) The momentum equation:

ou;-‘;'+ov:-§= -% *ﬁ' ‘ (6!
c). The ensrgy eqmtiom,

ou;":o+ ov’}';g ..b ;’;‘qfut);..' | ‘75.-
d) The perfect gas imn

P o a»"l»','. o o, BV ®

Here h_ = h + u’/2 is the stagnation entbalpy, and the symbols q and
represent th: heat flux and o}ho'u{ stress, iospo_ctiwly:
2u

urv' : q & k24 - o RV o (91

\I;y'ﬂ




Note that these equations neglect the lateral pressure gradient dis-
cussed earlier. Although the lateral gradient strongly influences
the momentum thickness, as mentioned, it appears to have a negligible
effect on the wall shear stress approach used here. Equations (5)
through (9) wexe apparently first assembled by Young (78) and are
now standard to compresaible turbulent flow analyses. There are

six unknowns ( p ,u,v,ho,q, T) and only four equations (5-8), so

that further relations are needed. The standard point of departure
for an FD method is to correiate the variables q and Tt with local
conditions into two additional expressionsg for eddy viscosity and eddy
conductivity. The standard IM method approach is to combine Eqns. (5)
and (6) and integrate with respect to y across the entire boundary

layer, thus obtaininé Egn. (1), the Xarman integral relation. Addi-

tional relations for IM methods are then brought in as correlations

between inisgral parameters.

The pMnt method chooses two- and only two= additional relations:

,u«.,.._,....v..,;,.v.._..

e) The co.prehihh lav-of-the-wall:

u+ ‘- u/v¢ = fon( yv*/Vv ~prossure  heat ’ compressibility) (10)

w ' gradient '’ flux

vhere V*'(a;:)* is the friction velocity related to wall density. The
" exact form of Eqn. (10) will follow later. | |

f) Crocéo"q *nmgm »!o:»th. snexgy eqmuon - cf, Schnchung (62)s

 Prandtl number # unity: 'r»i a + bu ¢+ t':u2 . 1)

The Crocco assumption, which appears to be quite uuoubld !orl-arbit_nry

11




compressible turbulent flows - see, for example, Lee et al (42) -

i

can be combined with Eqn.(8) to express the density distribution
p(x,y) in terms of u(x,y), hence uncoupling the energy and momentum

equations, This means that a single differential equation for local

] wall friction can be derived witih the new approach and uncoupled \ 1
from the local Stanton number. The constants (a,b,c) in Eqn.{11) J

can be related to wall conditions as follows. First, at the wall,

u = 0, which is the no-slip condition. Hence a = Tw' Second, the
temperature gradient at the wall must reflect the wall heat flux.
Hence b = qwuw/kwrw. Finally, if b = 0 (adiabatic wall), the wall

. . 2
temperature must equal the adiabatic value Taw= Te + rUe/2cp, where
we have assumed constant cP as an accurate approximation for air. The

quantity r is the recovery factor, r = 0.89 for turbulent flow. Hence

the constant c¢ = (—r/QCP). Also, it is desirable to use the wall

+ )
variable u = u/v* in the final form of the Crocco relation. With

the above considerations, Ean.(ll) can now be written as

+ 2
(% S W 2 1 + gu - yut ' (12)
where B = _..?_v!_u_w__ - and = rv*z
T K pv* \ 2c T .
wwow pw

The new parameters, g and vy , are in ideal law-of-the-wall form to
suit our present needs. We shall term 8 the "heat transfer" parameter
and vy the "compressibility" parameter, To this we add the "pressure

gradient" parameter a already used earlier in the incompressible

analysis of white (74):




a s ' -m ax (13)

This is a very convenient parameter, being directly related to shear
stress without integral fhicknesses, and was suggested by the work
of Mellor (48).

Then the fundamental assumption of this paper is that the velocity
profiles are correlated by the law-of-the-wall in terms of the local
skin friction and the parameters for pressure gradient, heat transfer,

and compressibility just discussed:

WE (X)) = u = fon( Y easBey) (14)

where» y+ = yv*/v".
The actual functional relationship is a minor detail and will be developed
in the next section. Equations (12) and (14) provide the necessary
closure for the turbulent bounda;y layer relations, Eqns, (5-8). No
further relations are needed, and we will now derive a single ordinary
differential equation for computing the wall skin friction Cf(x) in an
arbitrary compressible turbulent boundary layer.

We should note that Egn. (14) is only an approximation, It is
believed to be accurate under all but the most strenuous conditions
such as a sudden change in pressure gradient or a discontinuity in wall

temperature, Other integral methods are also remiss in this respect,

13




with FD methods somewhat better in their ability to respond to sudden
local changes. It is interesting that the Karman methods begin with
an exact integral relation, Egn. (1), and then introduce approximations,
whereas the pregsent method begins with two approximations, Eqns. (12, 14),
and then proceeds exactly from then on.

Let us now combine Eqns. (5-8, 12, 14). Equation (5) is satisfied

identically by the compressible stream function defined such that
pu H - = -~ oV (15)

Note that ¢ has dimensions of viscosity. Equation (15) implies that

+
the dimensionless stream function may be correlated ‘exactly like u :

w/uw ' fen( y+. a, 8, v) (16)

+
The independent variables are now changed from (x,y) to (x,y ). By

combining Egns. (14) and (15) with the momentum relation, Egn, (6),

we obtain:

o i Al o L

W

I g
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s

+
The differentiation with respect to y is left untouched, but the

x-derivatives are carried out using the chain rule:

L. w3 o, 20, 3, 18
X iyt Y ox3a T oxag toaxay (18)
+

The density variation p(x,y) in Eqn.(17) is related to u™ through
the Crocco relation, Egn.(12), and the pressure gradient is related to

the freestream conditions from the Bernoulli inviscid relat;ion:

dp = dUe
dx % Y ax (19)

By introducing Egns,(18) and (19) and the definitions of (u,: ,y)

into Egn.(17), we obtain:

2 + ju + Ju 8 YyYdu 2y Y¢u
*._. +¢ o + v P e ot .  ——— — —— +
ov [u Bu yg*+2vu 55 oy, 18Iyt oy 3y y*']
L2 da + 1 ')w')u+ dau, vt Yt
+ - — —_—f  — -
PV &Y T ov, asy"') " P els & \‘,'W (20)

Finally, introduce the density from Eqgn.(12) and, following White (74),
perform the critical step: integrate the entire Eqn.(20) from y = 0
(T= Tw) to y =6 (1t=0), The result is the following ordinary

differential equation for the friction velocity:




dUe .* V* Ty
— A oman = — - — 2
VI ¢t o, xH Pele & ¢ v, ’ (21)

+
where 6% is the value of y' at (y=%. The functions G and H are
short notation for rather lengthy (but straightforward) integrals

+
involving u and the law-of-the-wall parameters:

5 + + + +
= 2 (. gt 8 42 0" L8 +_B__3J{_“_ i
6+ + +
P +)u 1 7¢3u +
Hosf g et Ty -

These expressions will be evaluated numerically in the next section.
After considerable inspection, it may be verified that =qn. (21)
contains only a single unknown: the wall shear velocity v#, The
remaining quantities such as G, H, etc., can be directly correlated,
through our assumed law-of-the-wall relation, Eqn. (14), to v* and the
known freestream and wall temperature conditions. Thus th. (21)

is self-sufficient: a first order, nonlinear, ordinary differential
equation in v+(x), which needs only the single initial condition v+ =
V'§ at x = X It is convenient to non-diunllonallu everything. Let
L and U be a refersnce length and velocity, respectively, and define

the following dimernsionless variables:

16




L

x* (24)

]
B
-

vV = ue/tJo = V(x*) ; A= (2/Cf)

Then Eqn, (21) may be rewritten in the follwwing form:

2 ) [}
(G-sua)%, + %\uf—m VA BEA T . R V (25)

where the primes signify diffe:enéiation with respect to x*, Equation
(25) is the central result of this report; It is valid as an approximate
means of solving for the skin friction d':l.ltribuvt:lon A (x*) for any
arbitrary freestream ﬁdch nunber’;md wall temperature distribution.

The proper boundary é-mdition is a single known value )\ = xo at x* =

X* . The only other relaticns needed are 1) suitable formulas for

the quantities G, H, and § s functions of (o,8,v,\); and 2) known

variations with x* of the freestream velocity Ve and the wall temperature

L ratio 'r"'/r.._' The effective Reynolds number ’l. is defined as: ‘ i

R - 23:& (/Y (T,/T) e

) ~ ' 3




The viscosity ratio in Eqn. (26) can be evaluated in terms of (Te/'rw)

through any convenient formula (Sutherland law, etc.). For our

purposes, the simple power-law expression is quite accurate:

n 27
e/ Wy * (TSI (2N

and, in the computations which follow, the value of n = 0.67 for air
was used,*
For use in Eqn. (25), the pressure gradient parameter a may be

written in terms of the new variables as follows:

am: ' (28)

P w

and formulas for G and H will be computed from Eqns. (22) and (23).
The final thread in the fabric is the evaluation of the thickness
function 6*. which happens to cause the only algobiaic difficulty in

the entire analysis. It is computed by evaluating Eqn. (14) at y = &:

4

u . U/"'_' N'l‘./l"’

. " = fton(st, by (29

.'rho commonly used valus n = 0,76 is actually not vory accurate for air.

18




Hence 6+is implicitly a function of )\ and known functions of x*,
The authors have not been able to invert Egr. (29) explicitly for
6+ and thus have had to settle for an iterative procedure of com-
puting 6+when A is known. For the computer program listed in the
appendix, this iteration is no trouble whatever, but obviously it would
create tedium in a hand computation. Eqn. (25) is entirely amenable
to hand computation or even graphical analysis (since it is only first
order), but in such cases a set of charts, detailing the velocity re-
lationship defined by Eqn. (29), would be handy for computing §*.

One remark is in order: the basic relation, Egn. (25), has the
unique property among IM methods of providing an explicit flow separation
criterion, which occurs when G = 3 ai. This is so because that event

will result in ) approaching infinity and hence C_ approaches zero,

4
which is the precise definition of "separation”. Thus, in the pregent
method, we need not search for a pseudo warning of separation such as

a particular valus of the shape factor H., or otherwise. This seems

12
a distinct advantage, since the writers know of no other effective
ssparation criterion £§r compressible flow. Finally, we may note that

Eqn. (25) is identical in form f.o,t-hc incompressible analysis of white (74).

"As B and v baco-o very small (mnqib_h heat transfer and compressi- |

bility), Bqnl‘., (22) and (23) for G and H becoms identical to that

 earlier analysis.

19




III. THE COMPRESSIBLE FLOW LAW-OF-THE-WALL

To complete the analysis and make Eqn. (25) useful, we must develop
a quantitative formula for the law-cf-the-wall as defined by Egn. (14).
The authors tried many approaches, the most promising of which were:

1. the effective velocity concept of van Driest (71);:

2. the transformation theory of Coles (18):

3. che transformation of Baronti and Libby (3);

4, correlation of measured profiles, e.g. Kepler and O'Briem (37);

5. the eddy viscosity approach of Deissler (23).
The van Driest effective velocity was used in the integral method of
Alber and Coats (2). Maise and McDonald (45) found that adiabatic
supersonic boundary layer profiles would collapse fairly well (+308) to
the incompressible law of the wall u*(y‘*) if the local velocity u were

replaced by the van Driest (71) generalized velocity u*:

2

u = (U /arsin (au/u,) , whers a = xM /(1em). NE |

'l‘hﬁ,c,o_ncopt can be ixténdod to flow with heat transfer, also, but the
agreement is uuch poorer, especially for high llnch nuabers. »

The varioul ttm!omtion theories - ses zcom (25) for a receat
review - are boconinq less popuur because of their nqcbnic mhxicy
and because they stand on very weak qrmmd in pmmm gndhnt or heat -
transter oondiu_ons. Nevertheless, the approach is viable, and the trans- |

formations of Coles (18 and of Baronti and Libby (31) have recently beep

20




suggested by Hopkins et al (34) as a means of correlating flatf plate
skin friction. However, every single computation of a given point
u+(y+’a’s Y) by transformation theory requires multiple iterations,
and for the present application the idea was finally dropped.

Scheme number four, the correlation of measured velocity profiles,
i3 an obvious resort for finding, at least roughly, the effect of the
parameters (G B Y) on the law-of-the-wall. Kepler and O'Brien (37)
measured supersonic adverse pressure gradient profiles (positive & and
Y ), while Lee et al (42) measured cold wall heat transfer (positive 8 )
and Brott et al (9) studied supersonic favorable pressure gradients
(negative @ , positive Y ). From these we find that the general
trend of effects is as sketche- in Figure 1. The effect of positive

@ and positive B is to raise the data above the familiar incompressible
logaritimic law, and negative @ and B have the opposite cffect. | The
parameter Y , being proportional to velocity squared, is always positive
and always tends to lower the data as IW. If (a,8.Y) are all finite,
the general effect is roughly a superposition of the various separate

effects. There is such a large scatter in measured supersonic profiles

and skin friction that no quantitative effects could be correlated.

~ The final scheme is an eddy viscosity approach, using, say, a
.lixi.ué lonqth approximation and the Croeeo relation for temperatuze.
This approach, which is simple and fairly quantitative and allows
ready ovaluation of the integrals in Eqne. (22) and (23), vas adopted

~ for the present oeﬁdy. It agrees with the effects m:em in Pigure 1

and gives numerical valuss of the fm\cum G.H, and c’whi_ch uci Wu ‘
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Effect of positive of (adverse /
a pressure gradient) and
positive 8 (cold wall

heat transfer).
/
/

Effect of ~‘(c:ompre"ibili*y).
negative o{(favorahle pressure
gradient), and negative £
(hot wall heat transfer).

( ¥ cannot be negative)
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adequate for general use, as shown in the next two sections,

The theory chosen was that of Deissler (23, who assumed that
the Prandtl mixing length approximation could be extended to the variable
dengity case with no further changeg. That is, the total shear is re-

lated to an eddy viscosity as follows:

T = (v +¢) ;—‘;‘ ’ (31)

2
where € = przy ;—% ’

and ¥ = 0.4 is von Karman's constant. Also, near the wall, the boundary
layer is approximately a Couette flow with negligible convective accelera-

tions, so that the expression

+
‘1+°y (32)

is a good approximation and used in many t_hboriu. Finally, the density
in Eqn. (31) is eliminated through the perfect gas relation, Eqn. (8).

"Equations (31) and (32) may be combined to yleld

+

‘+v2 gzy"z‘l‘u“l ) 1)

. S
Crrey =yt e IR T U e

which is quadratic in the velocity derivative. Solving, with viscosity

and density nphcod— by wratun tnmqh m. 12} md (27), wa obtair:
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+ 2 .2 1+2
w21 +r1ea EPeymt™a s ayh 38)
vyt 2 .2 1+n

+
2 xy (Tw/T)

This is the desired relation for computing the law-of-the-wall, but,
since the term in brackets [] is typically much greater than unity,

the formula collapses with very good accuracy to the following

approximation:

Ju . 1 b + X
¢ C 5T )T avayh (35)

Note that this is equivalent to neglecting the laminar portion of the

total shear in Eqn.(31). The only error occurs in the viscous

sublayer, and the effect on the present method is entirely negligible.
The temperature in Egn.(35) could be computed from an "eddy

conductivity" assumption and solved simultaneously with Egn. (35) -

as was done by Deissler (23) - but the present writers found that

quite adequate accuracy could be obtained by simply using the Crocco

approximation, Egn, (12):

Ak




Equation (35) may then be integrated - using e.g. Subroutine RUNGE in
the appendix - to cbtain numerical values of u+(y+,u,a.y). Closed
forms for the integral can alsc be found, but the resulting expressions
are cumbersome algebraically. We may note that Egn, (35) is precisely
the expression used in the finite difference method of Patankar and
Spalding (s58) for computing local velocity profiles near the wall.
Some numerical values of the integral of the Zgn. (35) are shown in
Figures 2 and 3. For (a,8,Y) = (0,0,0), the result is the familiar

logarithmic law:

+
u = % In(fy ) + 5.5 (36)

For finite ( a,8,¥Y, the variables can be separated in Egn. (35) and

integrated to give the following:

+ + y
. =l2yu =B, _ . ~l 2yup- P=-1 Potl
sin (J_Q_._) = sin (“LQ-'&)_ + :. { 2(p-p) + (g —Po-l)} , (37)

where Q = (32+ 4 Y)H and P = (1 +4 y+)§.

Since this formula diverges at (y = 0), it is necessary to insert

+  + '
initial values (uo, yo) sufficiently close to the wall for all the
curves to converge, From Figures 2 and 3, this appears to happen for

+
y less than about ten. Thus, for utilizing Egn. (37) in calculations,
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we will take as initial conditione the point (u: = 10, y; = 6), which
falls on the loqarithm;c curve, Eqn, (36). Note that, if y+ is known
u+ may be computed explicitly from Eqn. (37), but the opposite is not i
true, as mentioned earlier. Unfortunately, it is the problem of com-
puting y+ when u+ is known that confronts us in the present analysis
(for evaluating 6+in Egn. (25)), hence the need for iteration,

Figure 2 shows the law-of-the-wall profiles for a range of values

T

of o and Y , while Figure 3 shows the effect of 8 . The trend is

exactly as illustrated in Figqure 1, No attempt will be made to improve
upon these curves by, say, including a "wake". As sketched in Figure 4,
Egqn. (37) will simply be assumed to hold all the way to the edge of

the boundary layer whereas the dotted line illustrates the true outer
wake. Thus we make some error in estimating the boundary layer thick-
ness, but the effect on skin friction is entirely negligible, particularly
for a supersonic turbulent boundary layer, which shows almost no wake,
There is also only about a three per cent error in using this approxi-
mation to calculate the momentum and displacement thicknesses, if one
should care to compute such quantities. Note in passiag that the
arcsines in Eqn. (37) can never have an invalid argument, because of
the physical requirement that (T/Tw) from Eqn. (12; remain positive,
However, if & is negative (favorable pressure gradient), there is a
mathematical possibility that the quantity (1 + cy’ could become nega-
tive at large y+, thus rendering P imaginary and the formula invalid.
When this happens, though, the velocity gradient is regative, implying
that the velocity inside the boundary layer has becoms greater than

the freestream value Ue‘ To avoid this difficulty, it is recommended
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in negative a cases that y+(max) = («1/ a) and that the boundary

i

layer thickness 6+ be taken no greater than this value., The pro-

gram in the appendix adopts this idea.
With u+ known from Eqn. (}7), we may use Eqn. (15) to compute the

stream function:

v/, =

O On

ot ey’ (38)

after which the functions G and H necessary for the theory can be
computed from Eqns. (22) and (22). This time no closedform integrals
were found, and all computations were performed numerically. Further
details of these computations are given in the thesis by Christoph (1¢).
Some typical values of G and H are shown in FPigure 5. Again the ten-
dency is for the curves to be higher if a and B are positive and lower
for negative a and 8 and if v is finite. For the limiting case of the
logarithmic profile (0,0,0), the two functions are nicely approximated
by exponential functions which were used in the incompressible analysis

of White (74):

6u*,0,0,00 & 8.5 exp(0.475 u*)

(39)
Hu',0,0,0) & 0,062 exp(0.34 u")
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A third function of interest, to be called F, is the grouping which

occurs in our basic relation, Egn.(25):

F’(u+,3,3:Y) = x(126+-c) (40)

This quantity also has a limiting exponential approximation:

F(u',0,0,00) £ 47.0 exp(0.475 u') = 5.53 G(u',0,0,0) (41)

It was this near-proportionality of F with G that enabled White (74)
to find an exact solution to Eqn.(25) for modest pressure gradient
in incompressible fiow. The same fact will also enable us to simplify
our calculations for the present study. |

By constructing curve-fit expressions which reduce to the above
limiting formulas for (a,B8,y) = (0,0,0), we have adopted the following
approximations which appear to give good accuracy for the practical

range of values of all three parameters:

a(u;’.a /B,v) & 8,5 exp (0.475 u:f/’nm.x sgn(a) (am"n

Y + ‘-.- 0.6
Hu ,0,8,v) & 0,062 exp {o.84 u £/1140.12 sgn(®) (a8") 1
| | - | (42)

Flug,8,8,Y) & 5536 ,

.where f = (1 + 0,22y u:z)/(l + 0.30u:) .
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These approximations are utilized with Eqn. (25) to compute the skin
friction distribution cf =2/ 12 . The factor £ above will play a
prominent role in the flat plate theory of the next section, The
parameter ois computed from Eqn. (28) and u: is related to the
variable ) from BEqn. (29). For a perfect gas of specific heat ratio
k, the two quantities in the factor £ in Eqn. (42) may be written as

follows:

2 .
y ut r & @y

+ -]l -
Bu, = (LAY M) 1 = (1 1) -1

Finally, since the correlations in Eqn. (42) contain §', Eqn. (37)
must be iterated for » given value of u: to compute this thickness
parameter. As mantioned earlier, the computation of 5+ is the only

cumbersome procedure associated with the present method. It is hope?

(43)

that future work will enable 6* to be elimin~'.ed entirely in favor of the

single variable 1 .

This new theoxy will now be illustrated in the next two sections

for cases of practical interest. The complete set of buiq equations
uu-wugdwmmiutoccﬁunofm,nnport.

33

RO




IV, COMPRESSIBLE TUKBULENf FLOW PAST A FLAT °PLATE

theory, even if heat transfer is included., There have been numerous
theories of compressible turbulent flow over a flat plate, and
twenty~-four of these were discussed in detail in 1963 in a review paper

by spalding and Chi (66), who developed a least-squares correlation of

their own. Since then, auother dozen methods have appeared,“mgstlé coﬁé Aff-
cerned with the recent interest in generalized compressiﬁi”it§'f:ans- |
formations. To add on yet another method, Eqn. (25), ié not an uhéitihéli
prospect. Yet a comparison should be made for comﬁlafeness; and toithisrﬁn
end the Spalding and Chi (66) data compilation Q&s brouqht up ééAdate.‘
The Appendix lists data for flat plate flow at &26 adiabatic wall condi— -”:
tions and 147 heat transfer conditions, at !reestmm Mach aumbers from
zero to ten, It is apparently the largest® list evar compileﬁ of sach
data. The measurements were compared with ﬁha vérious :heoties-(see
Table 1) with two very 1ntere:tin§ results: 1) 'Eo# ai: adiabatic wall,
the presen‘t method has the mll&it wean abééiute 'a'rmr uf ‘#hy known

~ theory: and 2) for flow with f\ut tr“ﬂ\‘dl;t, an almsf forc}ottan method
given in a dissertation by Moore (53) is ':he clm wlrmer - the present
method scoring only a reasonably crcdii:abh tour:h place, bel.ind Spalding
and Chi (66) and vaﬂ Drust (72). Of c:iuml hpottance is the curf.ous
fact that, of all tne various flat phn tm:iu. gl&y_ the present

~ method cen be extended without anv coqplicgtion to variable froes’.resm
and‘ wall temperature conditions.  Thus che writefl believe that thoy have

put forth a demonstrably accurate «nd gencrilly useful new mothod.
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For the flat plate, V = 1.0 = constant, and Egn, (25) reduces to:

G da = Rt. dx* {44)

If the freestream Mach number and wall temperature are constant, 8 and
Y are constant, and G is therefore a function of 2 only. We may .
integrate Eqn.(44) to obtain a relation between local Reynolds mmbe:
and local skin friction:

A

- . = n+k ‘ ' :
R Uex/ Ve ('r'/'re) .5 G().R,y) dx 145)

:-'ﬂho:’é;vé /h&vﬁe_,\usuned fully turbulent tloitiwiﬂt the leading edge (x = 0)
'la;t_’_'t.hé" é@gixminq of the boundary layer ( X{- 0. The inteqiation could

be pnfomd numerically, but we desire an axplicit, albeit approximate,

skit. - friction uﬁﬂn;.f Thus we adopt the caz_"ve-ﬂt expression for G

from Eqn,(42}, for & = Og L

G{AB,y & 8.5 exp( 0.47% f';_*;r;n,)"; , | - (46)

su_bs_titut_inq ln‘to eqn;(44) and integrating, we 'obu},m

PN S 1+n |
0.4%% f‘ b (T./T') In{ 0,056 (Teﬂ') Rx) _ an
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Solving for cf = 2/ \2, we obtain the following interesting formula:

2
. .45
ce = - LE (elly) T (48)
£
In (0.056 * ‘Te/Tw) Rx)
The factor f 1is defined in Eqn.(42) and, for a perfect gas, becomes:
(1+0.22 ¢ (5 M T /)
£ = £ (49)
+ 0, -
(1+0.,3 (Taw/'l‘w 1) )
In the limit of incompressible flow with zero heat transfexr, £ = 1.0 and
T =T =T_ , and we obtain:
e w aw
Cf(Incompressible Flat Plate) = 0.451 (50)

———
In (0.056 R )
X

This formula was obtained by White (74) in his incompressible analysis.,

Now neither Eqn. (48) nor (50) is particularly accurate, being based upon

a curve~fit for G, but, by comparing the two, we may deduce the following

transformation for flat plate flow:

- 2 Te
CelRoyeMor TJ/T, Y = £ 7 Ce Regrective’ | ! (51)
W inc
_ l+n
where Reffective B £ (Te/Tw) Rx -
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Thus the flat plate skin friction for compressible flow is directly

related to an incomprassible value of C_ evaluated at a different

£
(usually smaller) Reynolds number, This is the same concept achieved
by previous theories of the flat plate in turbulent flow. 1In the notation

of Spalding and Chi (66), Cf should be related to cf by the relation:
inc

(Re Fp ) . {52)

depending upon whether the appropriate known Reynolds number is R# or

RB . The uniqueness of this transformation is satisfied only if

F = F_ F (53)

- Tw =2 - l4n - n -1
Fo T, £ ; F‘Rx f (Te/Tw) ; FRe (Te/Iw) f (54)

with f given by Egn.(49). There are many other theories, and Table 1
summarizes eight methods which are either well known or very accurate or
both, Note the diversity of expressions for FC and FRG . The first
six of these were tested against the 573 data points in the Appendix. and

the relative deviations ei wexe calculated according to the formula:
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TABLE 1
FLAT PLATE TRANSFORMATION FUNCTIONS

AUTHOR F FRO NOTATLION

2
Eckert(24) T /T, . Tp= T, (1+.039M -, 5(1-1/t))
e’'E £ =T
e w
Moore (52) (1/t-1) .11562 /L t=17 /0
( in‘l(l t)")2 e 0706 (1-t)
(s - 0 = .9212 ¢ -
L = 11.5 + 6.6(1-T /T_ )
z = t" exp(.4L)

2
Sommer & T /T n T =T (1+.035M +.45(1/t-1))
short (65) S e (Ty/Tg) S e €
Spalding & 2 2 t'7°2J‘772 t=T /T
. 2 rM e w
Chi (66} 35T 2 &
(sin "A+sin "B) a = (.2r Me t) i
i b = t(1+.22 MZ - 1/t) .
A= (2a2~b)/(4a2+b2)& ]
| B= b/(4a2+b)
J o= Tw/Taw
* van Driest same as (T_/T )n same as Spalding
: #2 (72) Spalding e w and Chi
. and Chi
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TABLE 1

{Continued)

AUTHOR

[ 7}

F

NOTATION

Present
method

-1 -2

/e

t= Te/Tw

l+.044ng t
1+.3(Taw/Tw-1)

Baronti &
Libby (3)

. n
J(TB/TW)

n
(T /Tp)

[N
"

T'Te

. 2
= (Tf/Te)(J+(l+.iMe
-3) (5 3)(%Cfi)

2 -1
—.lMe(37.45Cfi))

. 2
Tf— Te(3+(1+.2Me—J)(10.6)

2 2
(Cey) *-.1lce, (10.6)%)

(ITERATE FOR Tf, Cfi)

Coles (18)

. n
T /T)

n
(T /Te)

- JTe +
Te © 3 (T/Te)dY

w
o

s 2
T /'T = + l + :ZM
e ] (1+. e

-3) (') (g /2)

2 2
- ut
ut(,.1 Me Cfi)

+
Note: u given as a
function of y* in
reference (18).

T l‘\ . .
ITERATE FOR T, Cg;
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Error: e, = ( Cf / C -1), (55)

exp " theory +

Both the rms and mean absolute error were computed for the first six

methods in Table 1:

k]
1
RMS Error = ( % z ei) ; Mean Absolute Error = R Iei] (56)

The final two methods in Table 1 - the transformation theories of Coles(18)
and Baronti and Libby (3)-were not computed. A glance at the Table shows
why. Not only do the compressibility transformations require iteration

to compute the "reference" temperatures (TB,Tf,Tc), but within this
iteration is another nested iteration for the incompressible skin

friction Cfi. The writers were, frankly, not prepared for such an

ﬁ undertaking and, frankly, doubt if the average engineer is prepared for
it either. Nevertheless, the two theories continue to be popular.

The data are in the form of skin friction Cf or drag coefficient CD
for various Rx or Re. Since FRx and ng are almost always fractions,
the incompressible value Cfi is invariably evaluated in the low
Reynolds number range and it is important to have a good formula for
computing Cfi from Reffective' Otherwise one will add on the error in
the formula to the error in the transformation. Apparently the best

incompressible formulas are those of Spalding and Chi (66), who integrated

the exact law-of-the-wall for zero pressure gradient, including the

sublayer region, This results in implicit formulas for C

f:




4

= — i —E _ _ _ _
Ry = 3072 —ggl © (Y -4Y+6)-6-2Y-Y /12-¥"/20-Y /60-Y /252) (a)
(57)
' 1 b 2 3 4 5
Rg =3z * 75 (©(Q-2/V) +2/¥ ¥'/6 -¥"/12 -¥" /40 - Y"/180) (b)
k

where Y = 0.4 (Z/Cfi) .

If the Reynolds number is known, one must iterate these formulas to find
Cfi by taking as a first estimate, say, a simple power-law formula.
Equations (57), although cumbersome, have the best known agreement with
incompressible friction data - see Spalding and Chi (66) - and hence were
used for the theoretical comparison in Table 2.

If we wish to compute the drag CD for a given RL' Equation (57a)
is used to compute Cf(L), which specifies Y(L) and therefore specifies
RO(L) from Egn.(57b). Then the drag follows from the Karman integral

formula for zero pressure gradient:

c = 261/ = 2 Rg(L)/ R, . (58)

Again the computation is obviously cumbersome, but the accuracy is
desirable for the theory comparison,

Table 2 shows the comparison of the first theories from Table 1 with
all of the flat plate friction data known to the writers. For an adiabatic
wall, the methods of Spalding and Chi and of van Driest are essentlally
identical and, together with the pregent theory, are the most accurate

theories available. The present theory has a significantly lower mean
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TABLE 2
COMPARISON OF SIX THEORIES WITH FLAT PLATE FRICTION DATA
f ADIABATIC: 426 Points COLD WALL: 147 Points
AUTHOR RMS % Error ABS % Error RMS % Error ABS % Error
Eckert (24) 12.44 9.06 24,61 20.28.
Moore (52) 8.87 6.54 12,56 10,17
Sommer and 3.40 7.77 19.95 16.45
‘ Short (65) ‘ * ‘ :
b
|
|
| Spalding & .
’ Chi (66) 7.59 | 5.46 13.23 11.04
i
Van Driest ’
$2 (72) 7.55 5.46 14.28 11.73
Present
Theory, 7.59 5.17 ' 14.80 12,29
Egn. (54)
k

Note: RMS Error = ( %z ei ) 1+ MEAN ABS Error = % T ]eig
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absolute error,

For flow with heat transfer (cold wall data), a surprising winner

emerges: a dissertation by Moore (52) which received only limited

distribution and was not included by Spalding and Chi (66) in their

review. The method of Spalding and Chi takes second place over van
Driest by virtue of the term (Tw/'raw)'772 added to FRrge The present
theory is a close fourth behind that of van Driest, For heat transfer
work, the present theory would be greatly enhanced by dropping the
Crocco assumption, Eqn.(12); its performance is creditable in any case.
Note that the widely used "reference temperature" method of Eckert is
in fact a very poor performer.

It is interesting that the method of Moore (52) has surpassed the
least squares data correlation of Spalding and Chi (66) by simply coming
up with a Letter formula than the one which Spalding and Chi minimized.
Moore used the van Driest effective velocity, Egn.(30), and added a
factor "L" (see Table 1) to accourt for the variation in viscous sublayer
thickness with wall temperature. Also, Moore introduced a "Q" factor
to modify the momentum analysis of Wilson (75) to account for an adiabatic
recovery factor of r = 0.89, which was the value used in all calculations
for preparation of Table 2, It appears from the writers' study that the
increased effectiveness of Moore's method is chiefly due to the sublayer
correction factor "L",

For the reader's interest, Figure 6 shows the classic (Cf/Cfi) plot
versus Mach number for Rx = 107 and various wall temperature ratios. As
is well known, there is a large effect of wall temperature over the entire
Mach number range. Similarly, Figure 7 shows the effect of keynolds
number on the adiabatic wall friction factor. We see that this effect
also can be substantial at very high Mach numbers.
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Figure 6, EFFECT OF WALL TEMPERATURE ON THE
RATIC OF COMPRESSIRLE TO INCOMPRESSIBLE

SKIN FRICTION: PRESENT THEORY, EQNS. (54,57).
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Although they were adopted for the rigorous comparison in Table 2,

the implicit formulas for Cf and cD from Eqns.(57,58) are really too

cumbersome for routine use. Therefore, for general interest, the writers
compared Eqns,(57) and (58) with some of the more popular engineering
formulas for drag and skin friction, cumouting the per cent deviation

from Eqns.(57) and (58). For evaluating Cf(R*), we may cite the

following formulas and their accuracy over the range R.x = 105-109:

a) Blasius power-law:

0.2
Cg = 0.0592/ R, + 308
|
i b) Schultz-Grunow:
. 2.584
C, = 0.370/(log, R.) + o8
¢) Prandtl-Schlichting:
C. = 1/(2 log. R - 0.65)%°3 + gy (59)
£ 10 x . -
d) von Karman:
¢,? . 4,15 log, (R C,) + 1,70 + 713
£ e 10°x £ * -
‘e) Present approximation: Eqn.(50) modified-
Ce = 0.42/1n7(0.056 R) & 4%

It seems that tha present theory gives the most :nliabl( approximation
for computing skin friction explicitly.

from R

R have the following formulasg:

For computing Cf




a) Prandtl-Falkner power law:

6,

c, = 0,013/ Ral 6 %

£
b) Squire-Young:

2 5
C, = 0.0576/ log, (4.075 R;)  + 7% (30)

c) von Xarman-Schoenherr:

cf = 1/(17.08 R°2+ 25.11 Ry + 6.012) + 3%
Here the accuracy is much better, even.faor the i.-rude formulas, because
© 1is a much better local variable than x, which suffers from ambiquity
about the location of the "virtual arigin“‘ of the boundary layer. Since
© was ignored in the present analysis, no formula of this type arose.

It should be pointed out again that formulas based on R, cannot stand
on their own, because ©(x) is not a known geometric variable and must

be computed as part of a Karman integral type of analysis,
For computing the drag Cp from R+ we have the following:
a) Blasius power-law:
0.2 e a
Cp = 0.0MAR S+ 253
b) Prandti-Schlichting: |

R 12,58 . ' - (61}
'CD = 0.455/(1091‘031) 403

¢) schultg-Grunow;

C. = 0.427/11a~
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d) Karman-Schoenherr:

e ,
C, ' = 4.3 1log (R C)  + 2% \

4 The Karman/Schoenherr and Prandtl/Schlichting formulas are clearly
superior.
To achieve explicit formulas with ewven better accuracy, the writers

fit the numerical values from Eqns.(57) and (58) to Prandtl/Schlichting

type curves, with the following results:

_ 2.32
a) Cf = 0.225/(1oq10Rx) t 0.5 %
- 1.64
b) Cf = 0.0253/(log10R9) + 1.5%
(62)
= 2,56
c) CD 0.430/(log10RL) 1+ 0.8%
= 1.807
F ‘ d) CD = 0.0385/(logloRe(L)) + 0.6%

These new expressions are the most accurate simple and explicit formulas
known to the writers. They are recommended for general usage for the
incompressible flat plate and for use with the compressible flow

transformations listed in Table 1.

The next section will consider cases where the freestream and wall

conditions are variable,

e o
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V. COMPRESSIBLE FLOW WITH A PRESSURE GRADIENT

The chief use of the present method is in computation of the skin
friction distribution Cf(x) in a turbulent boundary layer with arbitrary
distributions of Me(x), Te(x), and Tw(x). Very few existing methods
even apply to such general conditions, and these few are all, to our
knowledge, an order of magnitude more complicated than the present
theory. The present analysis consists only of a single first order
differential equation for the skin friction, Egn.(25), with the various
coefficients in this equation being computed from Eqns.(25,28,29,42).

Let us rewrite these equations here for summary purposes:

a . RV - vEN + Ymamm €3
dx* G - 3 gH !
! 3
where: a = XQAMN'"/Ry
- b
R (UOL/ve)(ue/qw)(Te/Tw) v
0 475 £ ) (T 5
. /Ty)

) '

¢ “~ 8.5 é&P(,l+o.1 sgn(a) Maé*

0.84 £ ) (Te/Ty) "

H & 0.062 exp(T35y7agn ol 410t "]

)

i

4

ul
.

ul
(7]
4]

\
n

0.1lr(k-1) z(T )

1+
T + 0.3(Tay=Ty) /Ty

and £ &

+
Since the above correlations for G and H contain the thickness § ,

we must (apologetically) supplement Eqn.(25) with the law-of-the-wall

relation, Eqn,(37), which relates d+ to the skin friction ) = (2/Cf)5:

i
l
4 g
|
¥
|




S . b N
A o= "Ty/Te) g4 gin (g + Y 2(e-p ) + 1Y Botl, o

e A s L

PHI B -1

L

+
12mo = B o - (Pry”, ana p = 1+ ash,

where @ = sin " ( )

To match at very low Reynolds number with the logarithmic law-of-the-wall,
the initial conditions were taken to be (u:,GZ) = (10.0,6.0). Note that
A appears only on the left hand side and 6% appears only in the term P
on the right hand side. However, in general, B and Y are not known in

advance and must be computed from Egn,(43) and the local skin friction:

K=
Y = r (—23"') Mz/ Az

(65)

8 = (TQW/TE) -1

(Tg/Ty)

Thus it is definitely necessary to iterate Egm.(64) to compute 6+(A)-
A FORTRAN-IV program is listed in the Appendix which integrates
Eqn. (63) subject to Eqn.(64,65) when the user specifies 1) an initial
value %d at some position xg = xo/L; and 2) known distributions of
Me(x), Te(x), and Tw(x). The program assumes a perfect gas, so that the
i3 computed from Ué" Me(kkwe)h, and the velocity
ratio is given by Vv = Ue/Uo = (Me/Meo)(Te/Teo)k. The computation of
y from Egn,.(65) also uses a perfect gas assumption, and the user would

be required to modify these two portions for real gas applications.

Now let us consider some particular cases.
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Flow with a Modest Pressure Gradient:

Suppose that the Mach number (or freestream velocity) variation is
only slight and the wall temperature nearly congtant., Then the parametcr
will be very small and we may neglect terms involving a and a' in
Egn.(63). We may also forgo computing 5+ from Eqn.(64), since it appears
only in conjunction with @, Finally, B and vy from Eqn.(65) would be

roughly constant. Equation (63) reduces to:

ai - - 5,53 g V'
a . Ry, V > 53 G V!NV , (66)
and G = 4

8.5 exp(0.475 £ X (T/T)7)

We have replaced F by (5.53 G). Since G 1is approximately proportional

to ex + Eqn. (66) has a closed form solution:

2 (MODEST
Cplxr) = —--,g'42 £ (Te/Ty) - ,  DRESSURE (67)
1n“(0.056 £ (T /T )" R . GRADIENT)
x/L
-2,57 +3,57
where R.eff (UoL/Vb) v g \ dx*

Equation (67) is the compresiible flow analog of the incompressible
relation of the same form discovered by White (74). Note that it
merely modifies the incompregsible relation by the same factors Fc

and FRy defined earlier for the flat plate in Eqn.(54). Thus it is

sl




proved that, for modest pressure gradients, the flat plate stretching
factors can be applied directly to an incompressible pressure gradient

calculation, in the manner of the Coles (18) and Mager (44) compressibility

transformations, But the idea breaks down entirely if the terms involving
a are not negligible. This would explain why, as discussea by McDonald
in Bertram (5), the simple integral transformation theories such as Figh
and McDonald (26) and Reshotko and Tucker (59) are accurate for modest
pressure gradients but fail when the gradients are strong. The authors *;
have found no explicit criterion for the validity of Egn.(67), and its

use in practical cases is probably very limited.

Flow with a Strong Adverse Pressure Gradient:

If the pressure gradient is strong, we are required to attack Eqn.[(63) %
directly with, say, the computer program in the Appendix. To assess 1£s |
accuracy, it is desirable to have skin friction data in a strong adverse
gradient. The writers have found only one suitable experiment: the flow
past a waisted body of revolution studied by Winter, smith, and Rotta (77).

Although the flow was axisymmetric, the boundary layer for x greater
than 24 inches was approximately two-dimensional, and we will not consider
axlsymmetric effects here. There are other experiments ~ e.g. McLafferty
and Barber (46a) - which have been compared with cther theories. 1In
Bertram (5), McDonald considers three such experiments, all of which
measure only ﬁbﬁentum thickness and shape factor, not skin friction., This
is almost unbelievable, until we reflect again that presently both theory
and experiment are locked in the grip of the Karman integral relation,

The only possible reason a designer would want to know & or le is that
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their product, the displacement thickness, is at least nominally useful,
to the extent that it correlates such peripheral phenomena as leading
edge shock wave interactions (which are not likely to be turbulent flow)
and~loca1 wa;l pressure fluctuations (which correlate equally well with
the parameter 6+ computed in this analysis by Eqn.(64)). Nor is the
typical designer liable to pay any more than lip service to the idea of
adding the displacement thickness §*(x) to the body shape for improved
aerodynamic computations. Rather, the writers believe that the only
parameter cf primary desigﬁ importance is the skin friction Cf(x), and
it seems incredible that an experiment could neglect this all important

*
measurement,

We consider now the data of Winter, Smith, and Rotta (77). The
freestream distributions Mé(x),for six different test section Mach
numbers (labelled ’%n ) are shown in Figure 8. Since the leading edge
was a thin cone and not well approximated by the two-dimensional equations,
we bagin the coﬁputation at x = 24 inches, where an adverse pressure
gradient begins and later levels out to nearly constant velocity at about
x = 45 inches., The walls of the model were essentially adiabatic. The
curve=fit velocity distribution for the present theory was chosen to be

of the form

3 -d X ~-@ x3

Ue(x) a + (b+cx)e ’ (68)

where (a,b,c,d,e) were fitted constants. Equation (63) was then solved

*The lack of friction data is particularly annoying in view of the fact
that the "measurement” of 0 and Hj2 actually involves a complete
gurvey and integration of both the velocity and temperature profiles
across the entire boundary layer at each station.
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for Ce (x) on the IBM 360/50 digital computer at the University of Rhode
Island. The initial condition was taken to be the measured skin friction
at x = 24 inches., A complete run for a given Mcn on the computer took
about ten seconds, the limitation being time required for print-out.

The comparison between theory and experiment is shown in Figures 9 and
10. Also shown are the finite difference computations of Herring and
Mellor (30). The present theory is seen to be in good agreement and in
fact is superior in every case to the much more complex analysis of
Herring and Mellor (30). Like most other methods, Herring and Mellor
key their initial condition to the measured momentum thickness and shape
factor and use these two to compute the initial skin friction, which
happened to fall much too high at the larger Mach numbers. The same
difficulty was reported in the integral method of Alber and Coats (2) and
in the review paper by McDonald in Bertram (5). The present theory, of
course, keys directly to the skin friction - a decided advantage over
Karman-oriented methods. In no case did the present theory predict
separation, although the highest Mach number run (Mm- 2.8) hinted of a
near-geparation condition with an initial decrease in the denﬁiﬁéor
(C-3aH of Eqn.(63). The agreement of the pruont thoory in the

relaxation sone at the trailing edqo is mrpminqu qood, considering

that rolaxation 1- the chief area of .tmccuucy in thc related :I.monpmsibh

" analysis of White (74). Perhaps r:hxation is not ’s urioul a probh:n

for a hw-o.‘.-tho-mn app:ox:l.mtion in supcmnic boundary uyoxl.
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Flow with a Strong Favorable Pressure Gradient:

Skin friction data in a supersonic favorable gradient were recently
reported by Brott et al (9). Using a flexible nozzle,‘these,workers

generated a freestream which increased from Me = 3 to about Me = 4,6

in a distance of sixty inches. The measured freestream Mach numbers are
1/3 o

’

i
/
b s

shown in Figure 11-a. They roughly approximate a powexr-law Me = 1.0 x

which was used as a curve-fit in the present theory, Eqn. (63), to compute B -

cf(x), beginning at x = 44 inches. The daéa was taken for a range of values : ;i

of the tunnel staénation pféssuré} which effegtively corresponds to a family
of values of the néminalikean}ds number RL pecauée of the variatioﬂzin
freestream density. Figu}e 114b compares thé{theoreticaiband experimenﬁal
(wall shear balance) measurementg of skin friction for four stagnation
préssures. Also‘shqwnris a,flaéiplaté comp@t&tion fog poj= 150 psia,(
Qﬁich illustrgtes the:us;al facfnghat’favoragle qradiént.frictién lies
above the equivalent flat plate values. The,&all*temperature Qas slighﬁly
cold, T = 0.82 Ta;, and the theéryAwas run for this condition. The
agreement of the theory- is good\exéept fhat if falls somewhat low at tbe',
trailing edge. \Friqtion‘data by Lee et al (42) at zero pressure gradient
in the same wind tunnel also rise somewhatuhigher downStream than\a‘flat
plate calculation, The reason\fof'this slightrdiécrepancy is n@t known
to the v.vritefr‘si.'~ | | ‘

An interesting approximaﬁién for strong favora;ie gradiéntgrat large

Reynolds was found from an inspection of the computer results, If the

gradient is truly strong (large negative a), the terms involving H are

dominant in Egn. (63), which simplifies to:

.o . Ty .
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This equation integrates exact] y into the following simple approx:.mation.

173 (STRONG ,
A 2 A, [:ix;,] ‘ FAVORABLE 2 (70)
: GRADIENT)

In this simple theory, the skin friction depends only upon the distribution
of (UO/Ue) ' and is unaffected by the level of Mach nmber, vnolds
number, or wall temper;ature. Equation (70) is also shown in rigure ll-b, ;

and the agreement is seen to be best at high Reynolds nu.bers.

Some Idealized Samgle Calculations. \ T

The experiments discussed above did nct indicate flow separation or

even suggest trends for theoretical comr-f.:ison. It wAas decided to complete .

~ this section by devel oping a fe', ideallzed cases for which the solution

of the present theory, Eqn’. {63) , could predict the effect of certain’ flow
parameters on adverse pressure :gradients.’ The care selccted was -an
adiabatic wall with an ex_ponential freestream Mach number distribution:

M (x) =T TM e"“’? ' ' “‘[ ) e -

and computer runs v}lexje made for various values f ;Mo, K, and che Reynolds

| ‘nnmloez: % (which can be interpreted from Eqn.(26) asg alther actual Reynolds
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number change or as a change in the effective wall temperature ratio. The

results of these idealized cbmputations are shown in Figures 12, 13, and
14, showing the effect of K, Mo' and RL respeétively.
Figure 12 shows that, for a given Mach number and Reynolds number,

an increase in the ad#erse gradient (K) will eventually cause flow

]

separation (qf 0). Computations at.other values of Mo . and RL confirm

- this effect. It~$ppears that a suitably relentless adverse gradient will

ultimately drive any turbulent boundary layer to separation,

Figure 13 sho&s the effect of Mach number level oﬁ‘these idealized
flows. An increage in Mach number naturaliy tends to drive the skin
friction to lower values, just as in the flat plate case, but‘no tendency
to?ard séparation‘igrnqted until »Mé’reaches hypefsonic values of the -

order of ten. This’effect‘isxpartly‘compﬁtdfionai in natuié,.be¢ausé the

’présént‘theory predléts the qnset of separdtibn at a finite value of the

order of 0.0001, which is more likely to happen for Mé =V10. We mayr

spectlate, howevar, that, for given gradient, an increase in Mach 1umber
appears to increase the tendency toward flow separation.

Finally, Figure 14 shows the effect of Reynolds number for a given

Mach number and gradient, No flow separation ia indicated at any level

of RL‘ If anyﬁhing, the "tendency" toward flow separation is stronger

at the low Reynolds numbers. :This was algo the case 1n‘the\1ncompressib1e
flow analysis of White (74).

It is hoped‘that more skin friction data under variable Mach number
and wall temperature conditions will be forthcoming from workers in the

field of compresgible turbulent boundary layers.
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VI, CONCLUSIONS

It is the purpose of this report to develop an entirely new
approach to the calculation of skin friction in compressible, two-
dimensional turbulent boundary layers with arbitrary pressure gradients
and arbitrary heat transfer. The analysis uses the familiar law-of-the-

wall, u+(y+), which is generalized in Section III to include the effect

"of local pressure gradient, heat transfer, and compressibility. The

finai expression for the chosen form of the law-of-the-wall is given by
Egn. (37). By utili?ing this express;on as an "equation of state” of
turbulence, the momentum and continuity équations can be integrated
across the boundary in law-of-the-wall coordinates. The result is a
single differential equation with the skin friction cf(x) as the only
variable, Eqn., (63), This is in sharp c;ntrast to the well known Karman
integral approach, which, by integrating in physical rather than Qall-
related coordinates, introduces not only skin friction but also other
(unwanted) variables such as integral thicknesses and shape factors.
The preﬁent theory is much simpler than any Karman-type theory and is
frankly meant to compete with or eventually replace the Karman approach.
A computer program for the new theory is given in the Appendix, but
the computations are simple enough to be performed by hand.
Some of the highlights of the new theory are as follows:

1. It is valid (but approximate) for arbitrary freestream and
wall temperature distributions.

2, The skin friction is the only variable, and the momentum

thickness, the displacement thickness, the shape factor, etc. are not

_:nqﬁircd. Nor is any skin frioction correlation or compressibility
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more accurate heat transfer computations and other geometries, | E b

transformation required.

3. The analysis contains an explicit separation criterion.
4. For flat plate flow, the analysis leads to a simple algebraic

expression for skin friction which, for adiabatic walls, has the smallest

mean abgolute error of any know flat plate theory. For a flat plate

with cold walls, the present thesory takes a creditable fourth place

s g SN

behind the theories of Moore (_52) , Spalding and Chi (66), and Van
Driest (72)}. For heat transfer, then, the chief drawback of the present ‘
theory is the lack of an adequate temperature law-of-the-wall.

S. For compressible flow with very modest pressure gradients,
the present theory leads to a closed form solution for C f(x) which
gives insight into why some other well known theories are accurate for
mild pressure gradients but fail when gradients are strong.

6. For compressible flow with strong pressure gradients, ‘he new
theory, Eqn. (63), apparently gives the best agreement with experiment
of any known compressible turbulent boundary layer theory. However,
there are so few data that to term the new theory "most accurate” is
obviously a premature move,

Overall, it is felt that the new theory is definitely useful from-
the point of view of 1) simplicity; 2} accuracy; and 3) insight mﬁc
the behavior of turbulent skin friction in high speed flows, It is

also felt that this new approach can be readily extended to include
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APPENDIX I.

A FORTRAN PROGRAM FOR SOLVING EQUATION (63)

FRANK M. WHITE - GEORGE H. CHRISTOPH - UNIVERSITY OF RHODE ISIAND
THIS PROGRAM SOLVES EQUATION (63) WITH A RUNGE-KTTTA SUBROUTINE.
REAL M, N, Mz
DIMENSION Y(30), 2(30)
ASIN(X) = ATAN(X/SQRT(1l.=X*X))
READ IN VALUES OF UZERO, MZERO, TZERO, AND CURVE-FIT CONSTANTS.
6 READ(5,1) UZ, Mz, TZ, A, B, C, D :
1 FORMAT(7F10.2)
L=0
READ IN RL, XZERO, XMAX, DELTA-X, MU EXPONENT, DELTAPLUS, LAMBDA-ZERO.
READ(5,1) R, X, XMAX, DX, N, DEL, Y(1)
WRITE(6,61) Mz, Y(1)
61 FORMAT( 'l THIS RUN IS FOR MZERO = ',F9.3,9X,'AND LAMBDA =',F9.2/)
TEST AND ENTER SUBROUTINE IF XMAX HAS NOT BEEN EXCEEDED.
47 IF(X-XMAX) 2, 16, 16
2 CALL RUNGE(1,Y,Z,X,DX,L,K)
GO TO (10,20), K
NOW COMPUTE THE VELOCITY V AND ITS TWO DERIVATIVES FROM CURVE-FITS.
10 V = A + B*X + C*X*X
VP = B + 2,*C*X
VPP = 2,.*C
COMPUTE THE TEMPERATURE OF WALL AND FREESTREAM FROM CURVE-FITS.
TE = B + C*X + D*X**3
TW = A + B*X*X
COMPUTE THE FIRST AND SECOND DERIVATIVES OF (1AV).
UP = VPAN
UPP = (<VPP + 2,.*VP*VPAN)AN
COMPUTE MACH NUMBER, ALPHA, BETA, GAMMA, AND UPLUS-E.
M = MZ*V*SQRT(TZ/TE)
RL = R*(TE/TW)** (.5N) :
ALF = Y(1)**3*UP/RL + .0000001 _
BETA = ((TE/TW)*(1.+,178*M*N) - 1. )/SQRT(TBM)
GAMMA = ,178*M*M/Y(1)**2
UPLUS = Y(1)*SQRT(TE/TW)

'NOW USE THE LAW-OF-THE-WALL, !QN(S?) » TO OOWB DEL'I‘APLUS BY ITERATION,

(PZ = SQRT(1. 4 6,°ALF)

PR= (P2 =1.)/(P2 +1,)

9 = SQRT(BETABETA + 4.4GAMMA)

S2 ® ASIN((20.*GAMMA - BETA) /D)

IF(UPLUS - (Q+BETA)/2./GAMMA) 41, 42, 42
42 s = 1.570796

Go TO 43 - '
41 S = ASIN((2.*GAMMA*UPLUS - mmm

43 8 = ,4*(S-8Z) /SQRT(GAMMA)

IF(ASS(AL!')-.OOOOI‘) 40, 40, 81

40 DEL = 6.°EXP(S)

GoT0 4

81 p = sgmmu. + m«awn
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FORTRAN PROGRAM FOR EQUATION (63) - Continued.....

Do 80 I =1,5
T = PR'EXP(S-2.*(P-PZ))
P =P « ((P=1)/(P+1)<T)/(2./(P+1)**242 *T)
IF(P) 26, 26, 80
80 CONTINUE
DEL = (P*P-1)/ALF
IF(ALF*DEL + 1) 26, 4, 4
26 DEL = ~1/ALF
4 AD = ALF*DEL + .0000000001
C NOW COMPUTE THE FUNCTIONS G, F, AND H FOR EQN.(63).
FAC = (1.+.22*GAMMA*UPLUS**2)/(1.+.3*BETA*UPLUS)
G = 8.5*EXP(.475*FAC*UPLUS/(1.+.1*AD/ABS(AD) **,5})
H = ,062*EXP(.84*FAC*UPLUS /(1.+.12*AD/ABS (AD) ** .4))
F = 5,53*G
C FINALLY, COMPUTE THE DERIVATIVE OF LAMBDA FROM EQN. (63).
GNET * G -~ 3.*ALF*H
2(1) = (RL*V - VP*FA + Y(1)**4*H*UPP/RL) /GNET
C RETURN TO THE SUBROUTIWE UNLESS GNET HAS BECOME NEGATIVE (SEPARATION).
IF(GNET) 606, 606, 2
THE SECOND SUBROUTINE BRANCH POINT (20) PRINTS OUT THE ANSWERS.
20 CF = 2./Y(1)**2
WRITE(6,36) X, DEL, CF, V, GNET , S
36 FORMAT(' X=',F9.3,' DEL=',P9.1,' CP=',F9.6,' V=',F9.5,' GN=',P9.0)
GO TO 47 ’ ‘
16 WRITE(6,86)
86 FORMAT('0 NO SEFARATION Dunmc THIS Rtm "
GO TO 6
606 WRITE(6,96) X
96 FORMAT('0O SEPARATION HAS oocmm AT X = '.uo.S)
GO T0 6 v :
END

0
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APPENDIX II,

RUNGE-KUTTA SUBROUTINE

For convenience to the reader, a description of the arguments
of the Runge Kutta subroutine and the subroutine itself are given

below.

CALL RUNGE ( N, ¥, F, X, H, M, K)

N - is the number of differential equatiéns to be solved (set by
the programmer)

Y - is an a':rny of "N" dependent variables (initial values set by
the programmer) |

F - is an array of size "N" of the dor:l._vdtim of the variables "“y"
(expression for each F(I) must be ‘qi;vun by the programmer)

ft - is the independent variable (initialized by the jarogn-or)

H - is the deaired increment in X (.qim by the progrm:)

M- hmindoxuudinthoSUBWthmtboutmlto
saro by the programer befors the first CALL

x-uminu«:umumwmsmmmmuumma
wmmm-umncmmmm rorou-ph. thov .
pmu.or nay use 60 10 (10. 20), K vhon sue-nf. 10 calcuhm
the d.tivnum r(t) and luunnt 20 pr.'l.nu tt-o answers X and ¥(I).
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SUBROUTINE RUNGE (N,Y,F,X,M,K)

THIS RUNGE-KUTTA SUBROUTINE WAS DEVELOPED BY F.M., WHITE

UL P N s e S S AR A ot

AND PERFORMS RUNGE~KUTTA CALCULATIONS BY GILLS METHOD

IR b

e i lais

DIMENSION Y(10), F(10), Q(10}

M=M+1

co ¢ (1,4,5,3,7), M
1po2r=1,N

2 Q(I) = 0.

a=.,5
Go TO 9 - i : ;f&ﬁ“ i
3 A =1.707107

IF YOU NEED MORE ACCURACY, USE A = 1,7071067811865475244

4 X =X + J5*H

5D06I=1,8 5 S PR

[}

(1) = YD) %ZA*(Fii)*H'Q?;))

6 O(I) é.*AfﬂiF(:) % (1. ;i3.§A);Q(i) -

A=.2028932 o o

IF YOU NEED MORE ACCURACY, SET A = .2023932138134524756 . =~ °

GO TO 9

Tmersar
8 ¥(I) = ¥(I) + BF(I) /6. - Q(1)/3. SO R
M=o R
o | 1 -k“ : | i~ ' \‘ - ‘ff
GO‘TO 10 V » |
9k =1 . . .
10 RETURN

END




; APPENDIX III.

% EXPERIMEUTAL DATA GF SKIN FRICTION COEFFICIENTSAT VARIOUS
REYNOLDS NUMBERS AND MACH NUMBERS

(For Adiabatic Flow)

Rb R* x 10 6 ct (exp) cd (exp)
Brinich and Diaconis (8)
2130 00206
2600 .00199
3030 .00190
4400 , 00174
7800 00146
10300 .00142
313000 00129
15400 »00128

I
o

* o o o

WWWwwWwww
L)
oo n

] ~ . Chapran and Kester (15)
{ - ‘ ~e91 i 4.04 »00308
S SR : .B1 Tl 4.82 .0C293
e B -2 R 6.20 - .00280
£ = ETT - ) S 6.68 .00288
SN _ 8L 7.42 N .00282
Codn ROt o .81 : c o 7.78 ) : +00279
R I A -} B ; 8.20 S .00259
S RN -} T T 9,00 ; 00278
EGRE S - E o . ‘9,80 . : +00268
.8 T o 10.90 - - . = 00261
w8 L 11.90 o T 00283
R 'al R o - 12 "oo “A . R - - 000264
BTS2 S ; Teoa 33325 e T "«00260
UGBl e T 13,800 0 o T 77,0026
PR T a8 e T e X800 e 00286
T T - S 121 S R 200250 -
o R Y - S P T ¥ 21 R T 00250 -
e80T T3 L T T L ,0028L
P oS GBS B.0 T ST, 00259
; T - SR - 20.7 : : T .00243
: S ) S 23,3 T 000240
o L W8 S 26,9 : . ,00237 -
: ; - ‘ . 31.8 o = Lo .00232 -
5.78 ‘ C .7 .00216
7.7 L B 400202
9.0 L e <00195
9.3 - ST W00195
1.2 _ e
1.3

*
v o
N M

L J <

«00191

T
{
NV NN
[ ]
LV T Y BT RV ]

*
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1.966
1.978
1.982
2.540
2.568
2.578
3.690
3.701
3.697
4.512
4.554
4.545
4.504
4.544

NV
wow»m

«352

.630

«764
1.24
1.26
1.37
1.44

Ry

-6
Rk x 10

Cf (exp)

ggggman and Kester (cont,)

2980
6470
8570
2190
6600
10200
2120
4100
7560
3470
6590
4980
2900
5240

2565
2720
$655

12.4
14.3
14.4
6.0
16.0
17.9
18,0
21.0
24,2
26.4
28.3
31.2
6.25
9.46
10.0
16.2
17.5
18.3

Coles (18)

Cope (20)

Dhawan (22)

Pt hd Pl Pud b Pt ot

72

«00272
.00218
«00202
«00242
.00181
+00186
«00211
00162
.00138
«00148
«00122
.00131
«00155
.00126

00250
«00210
«00210

»00346
.00340
«00329
»00293
«00296
00282
«00279

Cd {exp)

«90190
.00190
.00)88
00182
.00182
.00183
.00179
.00174
.00170
00168
00163
«00167
00170
.00163
00165
«00153
.00154
.00151

i n ot bz pts,
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*
VR
F -

.18
«20
26
27
31
.33
«37
46
49
56
57
«65
o5
.85
«97
1.45
1.‘8

R x 10
X

6

Dhawan (cont.)

1

Goddard (27)

1.89
3.80
5.1
7.2
2,5
2.7
3.4

3

1
4
9

 §
4.30
$.30
3.68
4.40
5,05
4.23
4.42
4.45
4.55
4.90
5.20
5.40
6.20
6.40
6.40
7.10
7.40
7.40
7.90
8.20

Hakkinen
<33
«36
.48
.48
«5S
59
«63
76
82
«90
«90

1.00
2,03
1.12
1.20
1.04
1.04

73

(28)

Cf (exp)

«00272

00417
00409
00395
.00380
.00384
.00374
00366
.00340
00344
00336
.00337
.00330
.00301
500301
.00300
+00300
.00294

Cq (exp)

.00412
«00340
.00327
00328
00193
.00189
.00182
«00)72
.00169
.00169
. 00158
00150
«00150
00140
».00135
.00149
.00142
.00140
.00139
.00140
.00133
.00129
«00140
.00130
.00123
.00127
.00130




1.49
1.50
1.50
1.50
1.50
1.50
1.52
1.52
1.52
1.52
1.71
1,72
1.73
1.73
1.74
1.74
1.75
1.76
1076

2.445
2,961
3.443
2.468
2,978

1.604
1.592
2.182
2,179
2.188
2.187
2.182
2.185

2,146

1.595
1,595
1.590
1.591
1.588
1.593
2.115
2.172
2.178
2.192
2.198

Hopkins and Keener (33)

Rx x 10”6

Hakkinen (cont.,)

1.04
1.02
1.04
1.02
1.03
1.03
1,02
1.02
1.01
1.01
.68
«67
.66
.84
«67
«85
.67
.84
.84

59680
55590
$3740
75260
68140

Ct (exp)

.00300
.00291
.00302
.00302
.00302
.00292
.00309
.00307
.00309
.00307
.00324
.00321
.00321
.00313
.00323
.00319
.00323
.00310
.00312

.00126
«00111
.00091
«00127
.C7130

Jackson, Czarmecki and Manta (36)

80156
10845
$0989
43716
36860
29198
20974
27132

7556
83872
72030
45061
30511
17090
88977

9657
13799
25216
35099
44303

"

.00162

«00217

»001444
.001461
«001485
«001530
«001614
«001766
.001865
«001620
«001660
«001760
.001860
«002080
«001700
«001654
«001636
«001505
«001449
«001400

Cd (exp)
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2.200
2,202
2,172
2,159
2.188
2.192
2.192
2.163
2.161
2.110
2,186
2.194
2.188
2.195
2.192
2.189
2,182
2.142
2,083
2,172
2.165
2.138
2,170
2.169
2.115
2.199
2.149
1.587
1.594
1.594
1.587
1.%75
1.548
1.469
1.599
1.602

- 1.998

1.593
1.586
1.567
1.555
1.598
1.597
1.579
1.596
1.596

1.879

$.78?

Ro

Jackson et, al. (cgﬂLLL

R x 10"6
x

52405
60112
14510
35508
44672
52248
59544
26336
13586

9723
37982
94481
63929
85542
73696
61403
49008
21061
13360
60685
40131
17131
68974
45284
19159
65500
21008

123836

107318
91405
72236
50908
26317
15675
78918
93874
67789
82482
35864
18258
11703
89760
60359
20816

101828
67108
23077

aun

Korkegi (40)

75

c':f (exp)

.001404
.00).387

001636

.00144¢
.001400
.001404
.001387
001505
«001636
.001654
.001365
.001256
.001289
.001256
.001286
.001289
.001324
.002484
.001544
.001369
.001454
.001690
.00127),
.001324
.001522
.001289
001484
.001408
.0014230
.001463
.001520
.001623
.001821
.001993
.001550
.001530
.001580
«001650
«001770
«00195%0
.002080
+001530
001616
+001934
~001540
001590
+001860

«001316

cd (exp)
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M R° Rx x 10 cf (exp) Cc d (exp)

s B e g 0 oy, o S g

5.770 2780 «001275
5.792 3429 .001223
5.805 4040 «001179

Matting, Chapman.__Nyholm and Thomas (46)

2,95 6.18 .00160
2,95 8.30 .00155
2.95 9.01 .00154
2.95 10.50 .00150
2,95 12,00 .00146
2,95 13,00 .00145
2.95 14.8 .00142
2.95 17.2 00140
2,95 19.9 .00136
2,95 21.9 .00134
2.95 24.6 .00133
2.95 26.0 .00130
2.95 27.5 .00130
2.95 30.5 .00130
2,95 34.0 .00126
2,95 35.5 .00129
2.95 37.5 .00124
2.95 42.0 .00123
2.95 54.0 .00120
2.95 65.0 .00190
4.2 4.63 .00132
4.2 .90 .00130
4.2 6.64 .00126
4.2 7.53 .00125
452 8.0 .oolzo
4.2 9.12 .00118
4.2 9.8 .00118
4.2 1.2 00114
4.2 12.6 .00110
4.2 14.0 00109
4.2 15.4 +00107
4.2 17.5 +00108
4.2 19.8 00104
4.2 22,5 00101
4.2 28.0 .000995
4.2 27.5 000975
4.2 3.2 .000980
4.2 | 34.8 000948
4.2 3.6 .000928
4.2 ‘ 42,0 «000922
4.2 48.0 000920
4.2 85.0 000898
4.2 61.0 f .000880
4.2 68.2 000860
4.2 5.0 000885
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2.82
2.82
2.82
2.82
2,82
2.82

2,831
2.843
2,865
2.897
2.787
2.809
2.828
, ""

- 2.693

2.41
2.4
’.‘1
2.41

1072
1307
1451
1792
252)
3268
3950

886
1493
1777
2180
2660
2789

1530

2140
2200

R x 10-6
x

cf {exp)

Matting et, al. (cont.)

84.0
95,2
7.17
7.64
9.60
14.80
18.60
27.8
33.0
45.0
46.8
4.7
20.4

.000840
.000828
.000680
.000660
.000634
.000610
.000600
.000530
.000512
.000510
.000529
.000331
.000325

Monaghan and Johnson (51)

«596

772

.824
1.187
1.93
2.36
2.93

Monaghan and Cooke

«490
<945
1.346
1.570
1.860
2.178

.00295
.00280
.00272
.00250
00237
«00227
00218

(50)

«00272
.00243
.00219
«00203
«00196
«00193

Moore and Harkness (53)

827
611
376
318
1120
873
$12
1410
1180

0'Donell (56)
«00240
.00240

.00223
00236

7

+000900
+000953
000987
«001020
«000849
«000874
»000940
+000862
000891

Cd (exp)
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1,724
1.724

1.782

1.726
2.017
1.996
2.000
2.249
2,242
2.236
2,20
2.502
2.53)
2.541

3600
3820
4100
5360

R x 10°°
X

O'Dqggll {cont.,)

«59

.93
1.42
2-12
2.41
2.90
3.26

cf (exp)

.00190
.00200
.00180
.00173

Rubesin, Maydew and varga (60)

11644
19833
6113
11015
20090
6162
8301
10711

20490

608S
9639
18811

3.4
3.49
3.63
4.13
4.13
‘.73
4.73
5.45
6.09
2.70
3.21
3.56
3.69
4.20
4.22
4.80
4.83
S.48
6.17

 shutts (64)

78

2002228
«002225
«001947
001784
«002060
001810
«00161S
«001985
«001816
«001704
«001623
«001804
001583
«001560

c
p (exp)

.00360
.00326
.00300
«00292
00291
.00268
»00260

.00266
.00255
.00255
00246
.00253
00241
00242
00241
.00231
00247
.00264
.00250
00251
00244
.00250
+00241
00238
00239
400229
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1.744
1.744
1.739
1.737
2.019
2.w9
2.007
2.238
2.227
2,230
z.‘”
2.483
2.502
2.484
2.739

2.72¢

2.949
2.949
".’50
3.161
3.168
3.389
3.402
3.400
3.681
- 3.681

3.667

3.672
3,684

9600

9300
10800
11700
12000
12300
13400
13600

12490
12240
8429
3se9
3443
12320
7528
2899
11670
6892
2520

11400

6097
6072
2660
11900
6304
3048

11400

2740
11310
7149

. 11270

7788
2758
10180
9836
7991

2078

-6
Rk x 10

SpivaE (67)

7.6
8.0
8.9
10.0
0.0
0.8
12.0
12,5

Stalmach (E8)

79

Cf (exp)

.00187
.00182
.00180
«00177
.00171
.00170
.00169
.00168
.00187
.00182
.00180
«00177
.00171
00170
.00169
.00168

«001955
«001995
002117
«002610

002559

«001885
«002095

«002630
«001767

«001994

+002578
- +001651

.001872
«001872
«002494

001492
+001802

«00221%
«00149%
«001708

.002160

+001407
001594
4001328
001452
4002016
+001243
001243
.001293
+002057
+002057

Cd (exp)

A APl 3 T e
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"e R° Rx x 10 ct (exp) C a (exp)
Wilson (75)
1.897 3.1 0033
1.897 5.8 0026
1.897 11.1 00238
1.897 13.8 00242
1.897 16.6 00230
2.12) .0.93 00350
2,121 8.3 00240
2.12) 11.0 00220
2.121 13.5 00218
2,003 2,83 «00310
2.003 5.45 00258
2.003 10.6 00234
2.003 13.3 «00230
2.003 16.0 »00220
2.186 8.0 00240
2.186 10.5 00219
2.186 ‘ 12.8 00218
2.186 15.4 «00212
2.186 0.62 00330

Saltzman and Fisher (60a)

0.51 24200 3.1 .00224
0.81 $1900 %9.4 00188
0.60 23500 30.0 .00224
0.90 32100 .8 .00187
0.90 21300 22.3 00204
1.26 31300 .1 .00200
1.53 27000 21,8 400195
1.38 33800 2.5 .00199
0.82 1300 188 .00226
0.64 23200 2.2  .00218
1.2 60300 82.8  ,00149
0.8 116100 ™2 .00171

1.8% 106000 9.8 0012




EXPERIMENTAL DATA OF SKIN FRICTION COEFFICIFNTS AT VARIOUS

8.325%
8.27
8.28
8.29
9.04
9.07
9.10
10.03
10.04

10.05

10.06

6.5
6.5
6.5

APPENDIX 1v,

REYNOLDS NUMBERS, MACH NUMBERS AND TEMPERATURE RATIOS

(For Heat Transfer)

6

'1"/‘1" R° Rx x 10 cf (exp)
Abbot (1)
1 3
1.8 3
1.8 7.5
Bill (31)
7.68 1245 .000790
7.97 1607 .00089)
8.28 1908 .000851
8.69 2287 .000800
7.17 2081 000924
7.26 2498 .000910
7.34 2885 .000870
7.37 3202 000820
7.41 3451 .000771
ui11 (32)
6.12 2200 3.3 000910
6.17 2808 3.7 .000840
6.2% 2760 4.2 .000796
6.18 2965 4.9 +0007 34
.07 1936 3.1 .000913
8.30 2276 ‘3.0 .000870
9.76 1300 1.t .000841
9.32 14350 2,4 +000761
8.91 1680 2.¢ © .000696
8.99 1700 2.5  .000673
 Bopkins, Keener and Lowic (34)
2.843 2262 00187
3.493 2189 ' 00182
2.692 = 4%%s .00122

3.601 3300 ' «0012%

81

':, (exp)

.00239
.00116
»00104
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M Tw/Te R9 R.x % 10 Cf (cxp) cd (exp)

R R i

Hopkins, Keener and Louie (cont.)

e Lt gt

3.503 5900 .00120

6.5 - C :
6.5 3,765 3815 .00123 ) . : ;
6.5 4.330 2185 .00141 ’ :
6.5 4,176 3890 .001.35%
6.5 4,300 8326 00100
6.5 4.333 6419 .0017%
Lee, Yanta and lLeonas (42) B
4.72 3.67 38100 , ' ‘ .000770
4.71 3.65 34450 000782 -
4.71 3.66 31000 y : 000792
4.71 3.66 27400 : - .000794 .
4.70 3.65 23800 . .,000812
4.70 3.64 19750 000832
4,695 3.64 15700 .000856
4,66 3.58 11340 .000892
4.59 3.48 6500 - ,000936
4.77 2,78 19180 .000928
4.79 2.40 17450 .000976-
4.72 3.69 41750 +000760
Monaghan and Cooke (50)
2,43 2,94 1898 .98 .00300 .00388
; 2.43 2.94 2278 1.40 00273 .00326
2.43 2.94 3270 2.10 .00232 .00313
2.43 2.94 3516 2,51 .00200 .00279
2.43 2.94 4525 3.20 .00188 .00281
2.43 3.42 2239 1.42 .00248 .00315
2.43 3.42 3003 2,12 .00232 .00280
2.43 3.42 3568 2.71 .00218 .00265
2.43 3.42 4556 3.70 .00209 .00245
2.43 3.42 ss8l 4.39 .00195 .00255
Monaghan and Cooke (51a)
2,82 3.5 1944 1,343 .00221 .0029n
2.82 3.5 2464 1.731 .00206 .0028¢
. 2.82 3.5 3107 2.426 .00198 .0025¢
2.82 3.5 339 2.897 .00196 .0023¢
Pappas (57)
1.69 b .807 +0036"
1.69 1.7 1.50 .0032;
1.69 1.7 2.20 .00316
1.69 1.7 2.89 ' +0029:
1.69 1.7 3.55 .00280
1.69 1.6

S 2.74 <0031

82




WWLSSISAOONWN
L ]
AV OO WY OO ®

3

(T RT WU T T T B ST T ]
.
NN O NN

1.69

1.69

1.69

1.69

1.69
1.69.°

1.69
1.69
1.69
1.69
1.69
1.69
1.69
2.27

2.27

2.27
2.27
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2.27
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2.27
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5.52

5.57

4.5]
4.74
4.83
$.02
4.97
3.89
3.1
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x

Pappas (cont.)
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Sommer and Short (65)

Winkler

3880

4300

1900 -

1782
2960
- 3455
3799
1055
1652

83

3.00 .

.. 4.07.

4.7
4.06

1 6.09
6.06
9.92
4.94
3.78

(76)

£.04
S.94
2,29
2.58
3.81
4.88
5.11
2,01
2.57

Cf {exp)

.00135
.00132
.00134
.00161
.00135
.00115
.00106
.00147
.00132

Cd (exp)

,00300
.00276
.00336
.00337
.00310
,00316
.00283
.00271
002779
.00273
.00255

- 400256

00240
.00235

00342

«00307
.00286

.0027G
00270

.00340

. .00290
-.00268
.00254

.00273
.00250
.00250

«00312
200250
00138
+00144
00120

00132
+00229 -
.00251

00154
.00145
00165
.00133
.00155
00152
.00143
+00133
.00179
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'zw/re Ro Rx x 10 Cf {exp) cd {exp)

Winkler {cont.)

3.58 1735 2.73 .00134 .00127
3.52 2488 2,27 .00124 .00153
3.77 2482 3.27 .00120 .00137
3.78 3256 3.5?7 .00105 .00182
5.15 - 2099 2,72 .00147 .00154

- 5.50- 2936 3.36 .00139 .00175
4.07 .00143 .00156

1 5.38 3173
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T3 ADLTRACT
A new approach is proposed for analyzing the compressible turbulent boundaxy J
layer with arbitrary pressure gradient, v}’ho new theory generalizes an incompressibl
study by the first author to account forvvariations in wall temperature and free-
streem Mach number and temperature. By properly handiing the law-of-the-wail in
the integration of momentum and continuity across the boundary layer, one may obtain
a single ordinary differential equation for skin friction devoid of incegral thick-
nesses and shape factors. o .

The new differential ecuation is analysed for various cases, For flat plate
flon, & new relation is derived which is the most accurate of all known theories
for adisbatic flow and reasonably good (fourth place) for flow with heat transfer.
For flow with strony adverse and favorable pressure gradients, the new theory is
in excelient agreement with experiment, possibly the most accurate of any known
theory, although the data are too sparse to draw this conclusion. The new theory
also contains an explicity criterion for boundary layer flow separation. Also, it
appears to be the simplest by far of any compressible boundary layer analysis,
even ylelding to hand computation if desired. :
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KEZY WORODS

ROLE wT ROLE wY ROLE wT

Aerodynamic drag
Aerodynamic heating
Aerodynamics

Boundary layer flow
Corpressible boundary layer
Law of the wall

Momentum integral theory
Skin friction

Supersonic boundary layer
Turbulent boundary layer
Tuwrbulent heat transfer
Viscous flow
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